World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Algebraic approach for the one-dimensional Dirac–Dunkl oscillator

    https://doi.org/10.1142/S0217732320502557Cited by:26 (Source: Crossref)

    We extend the (1 + 1)-dimensional Dirac–Moshinsky oscillator by changing the standard derivative by the Dunkl derivative. We demonstrate in a general way that for the Dirac–Dunkl oscillator be parity invariant, one of the spinor component must be even, and the other spinor component must be odd, and vice versa. We decouple the differential equations for each of the spinor component and introduce an appropriate su(1, 1) algebraic realization for the cases when one of these functions is even and the other function is odd. The eigenfunctions and the energy spectrum are obtained by using the su(1, 1) irreducible representation theory. Finally, by setting the Dunkl parameter to vanish, we show that our results reduce to those of the standard Dirac-Moshinsky oscillator.

    PACS: 02.20.Sv, 02.30.Jr, 03.65.Fd, 03.65.Pm