World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A functional approach to the next-to-eikonal approximation of high energy gravitational scattering

    https://doi.org/10.1142/S0217732321501388Cited by:1 (Source: Crossref)

    The Fradkin–Schwinger functional methods to represent a Green function in an external gravitational field are used to study the eikonal and the next-to-eikonal limit, including the nonlinear gravitational interactions, of the scattering amplitudes of an ultra-relativistic scalar particle on a static super-massive scalar target in the nearly forward limit. The functional approach confirms the exponentiation of the leading eikonal which also applies to the first non-leading power in the energy of the light particle, moreover includes the interaction at impact parameter much larger than the Schwarzschild radius associated with the center of mass energy in the ultra-relativistic limit.