Abstract
In this study, we work on understanding the behavior of relativistic fermions within the framework of a (2+1)-dimensional gravitational wave environment. Our main objective is to uncover an analytical solution for the massless Dirac equation in this particular scenario. Initially, we derive a set of coupled equations that describe the quantum dynamics of the system under consideration. Subsequently, we embark on finding an analytical solution for the resulting wave equation governing Weyl fermions by utilizing the generators associated with the sℓ2 algebra. This approach enables us to determine the relativistic frequency modes of the system. We then delve into examining how the parameters of the gravitational wave spacetime influence the real oscillation modes of Weyl fermions. Our findings highlight the sensitivity of Weyl fermions to the specific gravitational wave spacetime background being considered.