World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Theoretical comparison of transition rate B(E2) and deformation parameter with experimental data for calcium (20Ca) isotopes using shell model theory

    https://doi.org/10.1142/S0217732324501268Cited by:1 (Source: Crossref)

    A theoretical comparison has been made for some calcium isotopes (20Ca) which are even–even nuclei and have the atomic mass (Z = 20) with its previous experimental data. Theoretical calculations of some 20Ca isotopes (A = 42, 44, 46, 48, 50, 52) adopted by the shell model theory were performed to calculate the transition rate B(E2), theoretical intrinsic quadruple moments (Q0Th) and theoretical deformation parameters (β2, δ)Th were calculated by two methods by using different effective interactions for each isotope such as, su3fp, fpbm, fprkb, fpd6, kb3. Through code NuShellX@MSU, the single-body density matrix was calculated. The effects of the core polarization were neglected by adopting various effective charges that were employed, effective charges of conventional (Con-E), effective charges of standard (St-E) and effective charges of Bohr and Mottelson (B-M-E) which were calculated. The theoretical values of the B(E2)Th, the Q0Th and the (β2, δ)Th were then compared with the previous experimental data where values of the transition rate B(E2)Th, theoretical intrinsic quadrupole moments Q0Th and theoretical deformation parameter (β2, δ)Th, using the fpbm, the fpd6 and the kb3 interactions were the best.

    PACS: 21.60 Cs