World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

QUASI-EXACTLY SOLVABLE RADIAL DIRAC EQUATIONS

    https://doi.org/10.1142/S0217732398001522Cited by:17 (Source: Crossref)

    In the background of a central Coulomb potential, the Schrödinger and Dirac equations lead to exactly solvable spectral problems. When the Schrödinger–Coulomb equation is supplemented by a Harmonic potential, the corresponding spectral problem still possesses a finite number of algebraic solutions: it is quasi-exactly solvable. In this letter we analyze the spectral problem corresponding to the Dirac–Coulomb problem supplemented by a linear radial potential and we show that it also leads to quasi-exactly solvable equations.