QUANTUM MODEL OF INTERACTING "STRINGS" ON THE SQUARE LATTICE
Abstract
The model which is the generalization of the one-dimensional XY-spin chain for the case of the two-dimensional square lattice is considered. The subspace of the "string" states is studied. The solution to the eigenvalue problem is obtained for the single "string" in cases of the "string" with fixed ends and "string" of types (1, 1) and (1, 2) living on the torus. The latter case has the features of a self-interacting system and does not seem to be integrable while the previous two cases are equivalent to the free-fermion model.
You currently do not have access to the full text article. |
---|