World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE SEMIRELATIVISTIC EQUATION VIA THE SHIFTED-l EXPANSION TECHNIQUE

    https://doi.org/10.1142/S0217751X01003688Cited by:1 (Source: Crossref)

    The semirelativistic wave equation which appears in the theory of relativistic quark–antiquark bound states, is cast into a constituent second order Schrödinger-like equation with the inclusion of relativistic corrections up to order (v/c)2 in the quarks speeds. The resulting equation is solved via the Shifted-l expansion technique (SLET), which has been recently developed to get eigenvalues and wave functions of relativistic and nonrelativistic wave equations. The Coulomb, Oscillator, and the Coulomb-plus-linear potentials used in phenomenology are tested. It is observed that, the energy eigenvalues can be explained well upon the more commonly used nonrelativistic models, when such a dynamical relativistic corrections are introduced. In particular, it provides a remarkable accurate and simple analytic expression for the Coulomb ground-state energy problem, a result which is in the right direction at least to serve as a test of this approach.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!