World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SOLITONIC ASPECTS OF q-FIELD THEORIES

    https://doi.org/10.1142/S0217751X03013880Cited by:1 (Source: Crossref)

    We have examined the deformation of a generic non-Abelian gauge theory obtained by replacing its Lie group by the corresponding quantum group. This deformed gauge theory has more degrees of freedom than the theory from which it is derived. By going over from point particles in the standard theory to solitonic particles in the deformed theory, it is proposed that we interpret the new degrees of freedom as being descriptive of the non-locality of the deformed theory. It also turns out that the original Lie algebra gets replaced by two dual algebras, one of which lies close to and approaches the original Lie algebra in a correspondence limit, while the second algebra is new and disappears in this same correspondence limit. The exotic field particles associated with the second algebra can be interpreted as quark-like constituents of the solitons, which are themselves described as point particles in the first algebra. These ideas are explored for q-deformed SU(2) and GLq(3).

    PACS: 81R50, 81T13
    You currently do not have access to the full text article.

    Recommend the journal to your library today!