World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

GROUPOID SYMMETRY AND CONSTRAINTS IN GENERAL RELATIVITY

    https://doi.org/10.1142/S0219199712500617Cited by:32 (Source: Crossref)

    When the vacuum Einstein equations are cast in the form of Hamiltonian evolution equations, the initial data lie in the cotangent bundle of the manifold of Riemannian metrics on a Cauchy hypersurface Σ. As in every Lagrangian field theory with symmetries, the initial data must satisfy constraints. But, unlike those of gauge theories, the constraints of general relativity do not arise as momenta of any Hamiltonian group action. In this paper, we show that the bracket relations among the constraints of general relativity are identical to the bracket relations in the Lie algebroid of a groupoid consisting of diffeomorphisms between space-like hypersurfaces in spacetimes. A direct connection is still missing between the constraints themselves, whose definition is closely related to the Einstein equations, and our groupoid, in which the Einstein equations play no role at all. We discuss some of the difficulties involved in making such a connection. In an appendix, we develop some aspects of diffeology, the basic framework for our treatment of function spaces.

    Dedicated to Darryl Holm, for his 65th birthday

    AMSC: 83C05, 58H05