World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

WORLDSHEET COVARIANT PATH INTEGRAL QUANTIZATION OF STRINGS

    https://doi.org/10.1142/S0217751X0603446XCited by:1 (Source: Crossref)

    We discuss a covariant functional integral approach to the quantization of the bosonic string. In contrast to approaches relying on noncovariant operator regularizations, interesting operators here are true tensor objects with classical transformation laws, even on target spaces where the theory has a Weyl anomaly. Since no implicit noncovariant gauge choices are involved in the definition of the operators, the anomaly is clearly separated from the issue of operator renormalization and can be understood in isolation, instead of infecting the latter as in other approaches. Our method is of wider applicability to covariant theories that are not Weyl invariant, but where covariant tensor operators are desired.

    After constructing covariantly regularized vertex operators, we define a class of background-independent path integral measures suitable for string quantization. We show how gauge invariance of the path integral implies the usual physical state conditions in a very conceptually clean way. We then discuss the construction of the BRST action from first principles, obtaining some interesting caveats relating to its general covariance. In our approach, the expected BRST related anomalies are encoded somewhat differently from other approaches. We conclude with an unusual but amusing derivation of the value D = 26 of the critical dimension.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!