AN EMPIRICAL STUDY OF BOOSTED NEURAL NETWORK FOR PARTICLE CLASSIFICATION IN HIGH ENERGY COLLISIONS
Abstract
The possible application of boosted neural network to particle classification in high energy physics is discussed. A two-dimensional toy model, where the boundary between signal and background is irregular but not overlapping, is constructed to show how boosting technique works with neural network. It is found that boosted neural network not only decreases the error rate of classification significantly but also increases the efficiency and signal–background ratio. Besides, boosted neural network can avoid the disadvantage aspects of single neural network design. The boosted neural network is also applied to the classification of quark- and gluon-jet samples from Monte Carlo e+e- collisions, where the two samples show significant overlapping. The performance of boosting technique for the two different boundary cases — with and without overlapping is discussed.
You currently do not have access to the full text article. |
---|