World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MODELING THE MULTIWAVELENGTH SPECTRA AND VARIABILITY OF 3C 66A IN 2003–2004

    https://doi.org/10.1142/S0217751X07036907Cited by:0 (Source: Crossref)

    The BL Lac object 3C 66A was the target of an intensive multiwavelength monitoring campaign organized in 2003–2004. During the campaign, its spectral energy distribution (SED) was measured and flux measurements from radio to X-ray frequencies as well as upper limits in the very high energy (VHE) γ-ray regime were obtained. Here, we reproduce the SED and optical spectral variability pattern observed during our multiwavelength campaign using a time-dependent leptonic jet model. Our model could successfully simulate the observed SED and optical light curves and predict an intrinsic cutoff value for the VHE γ-ray emission at ~4 GeV implying the effect of the optical depth due to the intergalactic infrared background radiation (IIBR) to be negligible. Also, the contribution of external Comptonization (EIC), due to the presence of a broad-line region (BLR), in the emission of γ-ray photons could be significant early-on when the emission region is very close to the central engine but as it travels farther out, the production mechanism of hard X-ray and γ-ray photons becomes dominated by synchrotron self-Compton mechanism (SSC).

    Presented at the 15th Course of International School of Cosmic Ray Astrophysics — Astrophysics at Ultra-High Energies, 20–27 June 2006, Erice, Italy.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!