World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON LAGRANGE STRUCTURE OF UNFOLDED FIELD THEORY

    https://doi.org/10.1142/S0217751X11052840Cited by:11 (Source: Crossref)

    Any local field theory can be equivalently reformulated in the so-called unfolded form. General unfolded equations are non-Lagrangian even though the original theory is Lagrangian. Making use of the unfolded massless scalar field equations as a basic example, the concept of Lagrange anchor is applied to perform a consistent path-integral quantization of unfolded dynamics. It is shown that the unfolded representation for the canonical Lagrange anchor of the d'Alembert equation inevitably involves an infinite number of space–time derivatives.

    PACS: 11.10.-z, 11.15.-q
    You currently do not have access to the full text article.

    Recommend the journal to your library today!