World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SYMMETRIC TELEPARALLEL GRAVITY: SOME EXACT SOLUTIONS AND SPINOR COUPLINGS

    https://doi.org/10.1142/S0217751X13501674Cited by:91 (Source: Crossref)

    In this paper, we elaborate on the symmetric teleparallel gravity (STPG) written in a non-Riemannian space–time with nonzero nonmetricity, but zero torsion and zero curvature. First, we give a prescription for obtaining the nonmetricity from the metric in a peculiar gauge. Then, we state that under a novel prescription of parallel transportation of a tangent vector in this non-Riemannian geometry, the autoparallel curves coincide with those of the Riemannian space–times. Subsequently, we represent the symmetric teleparallel theory of gravity by the most general quadratic and parity conserving Lagrangian with lagrange multipliers for vanishing torsion and curvature. We show that our Lagrangian is equivalent to the Einstein–Hilbert Lagrangian for certain values of coupling coefficients. Thus, we arrive at calculating the field equations via independent variations. Then, we obtain in turn conformal, spherically symmetric static, cosmological and pp-wave solutions exactly. Finally, we discuss a minimal coupling of a spin-1/2 field to STPG.

    PACS: 04.50.Kd, 98.80.Jk, 02.40.Yy
    You currently do not have access to the full text article.

    Recommend the journal to your library today!