World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Multivacuum states in a fermionic gap equation with massive gluons and confinement

    https://doi.org/10.1142/S0217751X1550061XCited by:0 (Source: Crossref)

    We study the nontrivial solutions of the Quantum Chromodynamics (QCD) fermionic gap equation (FGE) including the contribution of dynamically massive gluons and the confining propagator proposed by Cornwall. Without the confining propagator, in the case of nonrunning gluon mass (mg), we found the multivacuum solutions (replicas) reported in the literature and we were able to define limits on mg for dynamical chiral symmetry breaking (CSB). On the other side, when considering the running in the gluon mass the vacuum replicas are absent in the limits on mg where the chiral symmetry is broken. In the pure confining sector, the multivacuum states are always absent so it is said that only one stable solution for the gap equation is found as claimed in previous analysis using different approaches. Finally, in the case of the complete gap equation i.e. with both contributions, the vacuum replicas are also absent in both cases; with constant and with running gluon mass.

    PACS: 12.38.Lg
    You currently do not have access to the full text article.

    Recommend the journal to your library today!