Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Excitation function of elastic pp scattering from a unitarily extended Bialas–Bzdak model

    https://doi.org/10.1142/S0217751X15500761Cited by:22 (Source: Crossref)

    The Bialas–Bzdak model of elastic proton–proton scattering assumes a purely imaginary forward scattering amplitude, which consequently vanishes at the diffractive minima. We extended the model to arbitrarily large real parts in a way that constraints from unitarity are satisfied. The resulting model is able to describe elastic pp scattering not only at the lower ISR energies but also at in a statistically acceptable manner, both in the diffractive cone and in the region of the first diffractive minimum. The total cross-section as well as the differential cross-section of elastic proton–proton scattering is predicted for the future LHC energies of , 14, 15 TeV and also to 28 TeV. A nontrivial, significantly nonexponential feature of the differential cross-section of elastic proton–proton scattering is analyzed and the excitation function of the nonexponential behavior is predicted. The excitation function of the shadow profiles is discussed and related to saturation at small impact parameters.

    PACS: 13.75.Cs, 13.85.-t, 13.85.Lg, 13.85.Dz
    You currently do not have access to the full text article.

    Recommend the journal to your library today!