Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Magnetic field corrections to the repulsive Casimir effect at finite temperature

    https://doi.org/10.1142/S0217751X16500184Cited by:3 (Source: Crossref)

    I investigate the finite temperature Casimir effect for a charged and massless scalar field satisfying mixed (Dirichlet–Neumann) boundary conditions on a pair of plane parallel plates of infinite size. The effect of a uniform magnetic field, perpendicular to the plates, on the Helmholtz free energy and Casimir pressure is studied. The ζ-function regularization technique is used to obtain finite results. Simple analytic expressions are obtained for the zeta function and the free energy, in the limits of small plate distance, high temperature and strong magnetic field. The Casimir pressure is obtained in each of the three limits and the situation of a magnetic field present between and outside the plates, as well as that of a magnetic field present only between the plates is examined. It is discovered that, in the small plate distance and high temperature limits, the repulsive pressure is less when the magnetic field is present between the plates but not outside, than it is when the magnetic field is present between and outside the plates.

    PACS: 03.70.+k, 11.10.Wx, 12.20.Ds
    You currently do not have access to the full text article.

    Recommend the journal to your library today!