Unraveling high-energy hadron structures with lattice QCD
Abstract
Parton distribution functions are key quantities for us to understand the hadronic structures in high-energy scattering, but they are difficult to calculate from lattice QCD. Recent years have seen fast development of the large-momentum effective theory which allows extraction of the x-dependence of parton distribution functions from a quasi-parton distribution function that can be directly calculated on lattice. The extraction is based on a factorization formula for the quasi-parton distribution function that has been derived rigorously in perturbation theory. A systematic procedure that includes renormalization, perturbative matching, and power corrections has been established to calculate parton distribution functions. Latest progress from lattice QCD has shown promising signs that it will become an effective tool for calculating parton physics.
This writing is based on a talk for the T-2 Theory Seminar at Los Alamos National Laboratory on February 1, 2018.
You currently do not have access to the full text article. |
---|