Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The Bloch equation for spin dynamics in electron storage rings: Computational and theoretical aspects

    https://doi.org/10.1142/S0217751X19420326Cited by:2 (Source: Crossref)
    This article is part of the issue:

    In this paper, we describe our work on spin polarization in high-energy electron storage rings which we base on the Full Bloch equation (FBE) for the polarization density and which aims towards the ee+ option of the proposed Future Circular Collider (FCC-ee) and the proposed Circular Electron Positron Collider (CEPC). The FBE takes into account non spin-flip and spin-flip effects due to synchrotron radiation including the spin-diffusion effects and the Sokolov–Ternov effect with its Baier–Katkov generalization as well as the kinetic-polarization effect. This mathematical model is an alternative to the standard mathematical model based on the Derbenev–Kondratenko formulas. For our numerical and analytical studies of the FBE, we develop an approximation to the latter to obtain an effective FBE. This is accomplished by finding a third mathematical model based on a system of stochastic differential equations (SDEs) underlying the FBE and by approximating that system via the method of averaging from perturbative ODE theory. We also give an overview of our algorithm for numerically integrating the effective FBE. This discretizes the phase space using spectral methods and discretizes time via the additive Runge–Kutta (ARK) method which is a high-order semi-implicit method. We also discuss the relevance of the third mathematical model for spin tracking.

    PACS: 29.20.db, 29.27.Hj, 05.10.Gg
    You currently do not have access to the full text article.

    Recommend the journal to your library today!