World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Computation of lossy higher order modes in complex SRF cavities using Beyn’s and Newton’s methods on reduced order models

    https://doi.org/10.1142/S0217751X19420375Cited by:0 (Source: Crossref)
    This article is part of the issue:

    Superconducting radio frequency cavities meet the demanding performance requirements of modern accelerators and high-brilliance light sources. Their design requires a precise knowledge of their electromagnetic resonances. A numerical solution of Maxwell’s equations is required to compute the resonant eigenmodes, their frequencies and losses due to the complex cavity shape. The consideration of resonances damped by external losses leads to a nonlinear eigenvalue problem. Previous work showed that, using State-Space Concatenation to construct a reduced order model and Newton iteration to solve the arising eigenvalue problem, solutions can be obtained on workstation computers even for large-scale problems without extensive simplification of the structure itself. In this paper, we augment the solution workflow by Beyn’s contour integral algorithm to increase the number of found eigenmodes. Numerical experiments are presented for one academic and two real-life superconducting cavities and partially compared to measurements.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!