Time evolution of the free Dirac field in spatially flat FLRW space–times
Abstract
The framework of the relativistic quantum mechanics on spatially flat FLRW space–times is considered for deriving the analytical solutions of the Dirac equation in different local charts of these manifolds. Systems of commuting conserved operators are used for determining the fundamental solutions as common eigenspinors giving thus physical meaning to the integration constants related to the eigenvalues of these operators. Since these systems, in general, are incomplete on the FLRW space–times there are integration constants that must be fixed by setting the vacuum either as the traditional adiabatic one or as the rest frame vacuum we proposed recently. All the known solutions of the Dirac equation on these manifolds are discussed in all details and a new type of spherical waves of given energy in the de Sitter expanding universe is reported here for the first time.
You currently do not have access to the full text article. |
---|