World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Implementation of high-precision inertial reference for Taiji-1 satellite and its ground evaluation based on torsion pendulum system

    https://doi.org/10.1142/S0217751X21400108Cited by:0 (Source: Crossref)
    This article is part of the issue:

    As the key measurement load of Taiji-1 satellite, inertial sensor detects the acceleration disturbance of test mass (TM) under nonconservative force in line with the basic principle of capacitive sensing, while keeping the TM in equilibrium position through electrostatic drive. In order to ensure the smooth progress of the mission, it is necessary to test and evaluate the performance of inertial sensor on the ground. In this paper, a torsion pendulum system is designed to eliminate the influence of the Earth’s gravity so as to meet the requirements of ground test. The experimental results show that the inertial sensor in closed-loop control mode can stably keep the TM at equilibrium position. At the same time, the ground detection of acceleration resolution of inertial sensor is greatly affected by ground vibration noise. If the inertial sensor operates normally in space, its acceleration resolution can reach3.96×109m/s2/Hz, thus meeting the requirement of Taiji-1.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!