Two approaches to quantum gravity and M-(atrix) theory at large number of dimensions
Abstract
A Gaussian approximation to the bosonic part of M-(atrix) theory with mass deformation is considered at large values of the dimension . From the perspective of the gauge/gravity duality this action reproduces with great accuracy the stringy Hagedorn phase transition from a confinement (black string) phase to a deconfinement (black hole) phase whereas from the perspective of the matrix/geometry approach this action only captures a remnant of the geometric Yang–Mills-to-fuzzy-sphere phase where the fuzzy sphere solution is only manifested as a three-cut configuration termed the “baby fuzzy sphere” configuration. The Yang–Mills phase retains most of its characteristics with two exceptions: (i) the uniform distribution inside a solid ball suffers a crossover at very small values of the gauge coupling constant to a Wigner’s semicircle law, and (ii) the uniform distribution at small values of the temperatures is nonexistent.
You currently do not have access to the full text article. |
---|