Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0217751X22501974Cited by:2 (Source: Crossref)

In this paper, a study of four different machine learning (ML) algorithms is performed to determine the most suitable ML technique to disentangle a hypothetical supersymmetry (SUSY) signal from its corresponding Standard Model (SM) backgrounds and to establish their impact on signal significance. The study focuses on the production of SUSY top squark pairs (stops), in the mass range of 500<m˜t1<800GeV, from proton–proton collisions with a center of mass energy of 13TeV and an integrated luminosity of 140fb1, emulating the data-taking conditions of the run II Large Hadron Collider (LHC) accelerator. In particular, the semileptonic channel is analyzed, corresponding to final states with a single isolated lepton (electron or muon), missing transverse energy, and four jets, with at least one tagged as b-jet. The challenging compressed spectra region is targeted, where the stop decays mainly into a W boson, a b-jet, and a neutralino (˜t1W+b+˜χ01), with a mass gap between the stop and the neutralino of about 150GeV. The ML algorithms are chosen to cover different mathematical implementations and features in ML. We compare the performance of a logistic regression (LR), a Random Forest (RF), an eXtreme Gradient Boosting, XGboost (XG) and a Neural Network (NN) algorithm. Our results indicate that XG and NN classifiers provide the highest improvements (over 17%) in signal significance, when compared to a standard analysis method based on sequential requirements of different kinematic variables. The improvement in signal significance provided by the NN increases up to 31% for the highest stop mass considered in this study (800GeV). The RF algorithm presents a smaller improvement that decreases with stop mass. On the other hand, the LR algorithm shows the worst performance in signal significance which even does not compete with the results obtained by an optimized cut and count method.

PACS: 12.60.Jv, 14.80.Ly, 07.05.Mh
You currently do not have access to the full text article.

Recommend the journal to your library today!