World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ELECTROMAGNETIC DEFLECTION OF SPINNING PARTICLES

    https://doi.org/10.1142/S0217751X94000212Cited by:9 (Source: Crossref)

    We show that it is possible to obtain self-consistent and physically acceptable relativistic classical equations of motion for a pointlike spin-half particle possessing an electric charge and a magnetic dipole moment, directly from a manifestly covariant Lagrangian, if the classical degrees of freedom are appropriately chosen. It is shown that the equations obtained encompass the well-tested Lorentz force and Thomas-Bargmann-Michel-Telegdi spin equations, as well as providing a definite specification of the classical magnetic dipole force, whose exact form has been the subject of recent debate. Radiation reaction — the force and torque on an accelerated particle due to its self-interaction — is neglected at this stage.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!