NUMERICAL STUDY OF THE ELECTRONIC STATES IN HOLE- AND ELECTRON-DOPED HIGH-TC CUPRATES
Abstract
We examine the electronic states in the hole- and electron-doped cuprates by using the t-t′-t″-J model. Numerically exact diagonalization method is employed for a 20-site square lattice under twisted boundary conditions. The density of states in the underdoped region clearly shows a pseudogap behavior near the Fermi level in both hole and electron dopings. In hole doping, the edge of the pseudogap in the occupied side exhibits a large weight that comes from a flat band near k=(π,0). In contrast, the weight near the gap edge in electron doping is larger for the unoccupied side than for the occupied side.
You currently do not have access to the full text article. |
---|