World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INVERSE MELTING OF VORTEX LATTICE IN LAYERED SUPERCONDUCTORS

    https://doi.org/10.1142/S0217979205028797Cited by:1 (Source: Crossref)

    Using molecular dynamic simulations for the melting transition of a flux line lattice(FLL) with point disordered pinnings, thermal fluctuations and magnetic interactions between pancake vortices, we study the disorder-driven melting transition from a disentangled and ordered Bragg glass (BG) to an entangled amorphous vortex glass (VG) or a vortex liquid (VL) in the pinning strength-temperature phase diagram. A portion of the BG region is found to be sandwiched in between the VG phase at lower temperatures and VL phase at higher temperatures, exhibiting inverse melting behavior observed recently on BSCCO crystals.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!