World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NOVEL SOUND PHENOMENA IN IMPURE SUPERFLUIDS

    https://doi.org/10.1142/S021797920603322XCited by:0 (Source: Crossref)

    In the last decade, new techniques for producing impure superfluids with unique properties have been developed. This new class of systems includes superfluid helium confined to aerogel, HeII with different impurities, superfluids in Vycor glasses, and watergel. These systems exhibit very unusual properties including unexpected acoustic features. We discuss the sound properties of these systems and show that sound phenomena in impure superfluids are modified from those in pure superfluids.

    We calculate the coupling between temperature and pressure oscillations for impure superfluids and show that this coupling increases significantly. This leads to the existence in impure superfluids of such unusual sound phenomena as slow "pressure" waves and fast "temperature" waves. This also decreases the threshold values for nonlinear processes as compared to pure superfluids. Sound conversion, which has been observed in pure superfluids only by high intensity waves should be observed at moderate sound amplitude in impure superfluids. Cerenkov emission of second sound by first sound (which has never been observed in superfluids) could be observed in impure superfluids. Even the nature of the sound modes in impure superfluids turns out to be changed. We have also derived for the first time the nonlinear hydrodynamic equations for superfluid helium in aerogel.

    PACS: 67.40.Pm, 67.57.Pq
    You currently do not have access to the full text article.

    Recommend the journal to your library today!