World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
I. Foundations of Quantum Optics and Quantum InformationNo Access

EVALUATION OF DECOHERENCE FOR QUANTUM COMPUTING ARCHITECTURES: QUBIT SYSTEM SUBJECT TO TIME-DEPENDENT CONTROL

    https://doi.org/10.1142/S0217979206034066Cited by:8 (Source: Crossref)

    We present an approach that allows quantifying decoherence processes in an open quantum system subject to external time-dependent control. Interactions with the environment are modeled by a standard bosonic heat bath. We develop two unitarity-preserving approximation schemes to calculate the reduced density matrix. One of the approximations relies on a short-time factorization of the evolution operator, while the other utilizes expansion in terms of the system-bath coupling strength. Applications are reported for two illustrative systems: an exactly solvable adiabatic model, and a model of a rotating-wave quantum-computing gate function. The approximations are found to produce consistent results at short and intermediate times.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!