CONTROL AND ERROR PREVENTION IN CONDENSED MATTER QUANTUM COMPUTING DEVICES
Abstract
Proposals for scalable quantum computing devices suffer not only from decoherence due to their interaction with the environment, but also from severe engineering constraints. For example, our ability to implement quantum gates is determined, in part, by the experimentally available interactions with which quantum information may be processed. Here we review a practical solution to some of the major concerns, control and error prevention, addressing solid state proposals for quantum computing devices. Some noise is eliminated by encoding a logical qubit into two qubits, other noise is reduced by an efficient set of decoupling pulse sequences. The same encoding removes the need for single-qubit operations which pose a difficult design constraint. We also discuss several generalizations which follow from this work.
You currently do not have access to the full text article. |
---|