World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COPPER SITE NUCLEAR SPIN RELAXATION ANOMALY AND THE KNIGHT SHIFT

    https://doi.org/10.1142/S0217979207044044Cited by:0 (Source: Crossref)

    In the low doping limit, a high Tc cuprate preserves a two band structure. O2p electrons are itinerant, Cu3d electrons are localized. Therefore the two component model is suitable to describe nuclear spin relaxation at copper sites. In addition to the Korringa process, the hyperfine interaction between nuclear spins and local electron spins is considered, which gives rise to the anomalous relaxation rate 1/T1 = a + bT. The decrease of the susceptibility near Tc, as shown by the Knight shift measurements, can be attributed to the ordering of local spins and the pairing of the uncompensated spins created by holes at the oxygen sites.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!