World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HIGH SPEED PROCESSING OF NI-ALUMINIDES-REINFORCED NI-MATRIX COMPOSITES BY PULSED-CURRENT HOT PRESSING (PCHP)

    https://doi.org/10.1142/S0217979208047249Cited by:7 (Source: Crossref)

    Nickel-aluminides-reinforced nickel-matrix composites were fabricated from 0.05mm-thick nickel foils and 0.012mm-thick aluminum foils, in a process using a pulsed-current hot pressing (PCHP) equipment, and the effect of reaction temperature on mechanical properties of the composites was investigated. The composites were of laminated structure and composed of Ni and reacted layers containing Ni-aluminides. The chemical composition of the reacted layers was dependent on reaction temperature in the temperature range employed. Tensile testing at room temperature revealed that the reaction temperature evidently influences mechanical properties, including tensile strength, elongation and fracture mode, of the composites. The tensile strength and elongation of composites fabricated at 1373K were 500MPa and 3.8%, respectively. Microstructure observations of fractured specimens revealed that Ni layers of the composite played a significant role in prohibiting the growth of numerous cracks emanating from Ni-aluminides. In the case of composites fabricated at 1373K, in addition, crack propagation between Ni-rich Al-solid-solution layers and cellular Ni3Al in the Ni-aluminides were prevented by mutual interaction.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!