World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PREDICTION OF MAXIMUM MOMENT OF CIRCULAR TUBES SUBJECTED TO PURE BENDING IN CONSIDERATION OF THE LENGTH EFFECT

    https://doi.org/10.1142/S0217979208047328Cited by:0 (Source: Crossref)

    In the present study, the bending collapse of an elastoplastic cylindrical tube subjected to static pure bending is investigated using the finite element method (FEM). The moment of the elastoplastic cylindrical tube is controlled by the flattening rate of the tube cross-section. For a long tube, the flattening rate can be expressed in terms of the axial and circumferential stresses that, in turn, depend on the material and geometrical properties and the curvature of the tube. On the other hand, for a short tube, the boundary condition of the fixed walls prevents the flattening rate. In order to account for the length effect of tubes, we propose a new method in which flattening is considered as a deflection problem of a fixed curved beam. The proposed method was able to predict the change in the flattening rate as the curvature was increased. A rational prediction method is proposed for estimating the maximum bending moment of cylindrical tubes that accounts for the length effect. Its validity is demonstrated by comparing it predictions with numerical results obtained using the finite element method.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!