World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

APPLICATION AND PERFORMANCE EVALUATION FOR THE DMS SYSTEM IN THE SLS PROCESS

    https://doi.org/10.1142/S0217979208047493Cited by:4 (Source: Crossref)

    A Solid Freeform Fabrication (SFF) system using Selective Laser Sintering (SLS) is currently recognized as a leading process and SLS extends the applications to machinery and automobiles due to the various materials employed. Especially, accuracy and processing time are very important factors when the desired shape is fabricated with Selective Laser Sintering (SLS), one of Solid Freeform Fabrication (SFF) system. In the convectional SLS process, laser spot size is fixed during laser exposing on the sliced figure. Therefore, it is difficult to accuracy and rapidly fabricates the desired shape. In this paper, to deal with those problems a SFF system having ability of changing spot size is developed. The system provides high accuracy and optimal processing time. Specifically, a variable beam expander is employed to adjust spot size for different figures on a sliced shape. Therefore, design and performance estimation of the SFF system employing a variable beam expander are achieved and the mechanism will be addressed to measure the real spot size generated from the variable beam expander. Also, the reduction of total processing time is an important issue in SFF system. A digital mirror system (DMS) is a system which scans the laser beam with different spot size. The spot size is selected based on the slicing section to decrease and accuracy of the process time and improve the processing efficiency. In this study, the optimal scan path generation for DMS will be addressed, and this development will improve the whole processing efficiency and accuracy through the scan efficiency by considering the existing scan path algorithm and heat energy distribution.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!