CHARACTERIZATION OF NANOSTRUCTURED ALUMINUM SHEETS PROCESSED BY ACCUMULATIVE ROLL BONDING
Abstract
An ultrafine grained (UFG) aluminum sheet was produced using severe plastic deformation (SPD) by a process known as accumulative roll bonding (ARB). Electron Back Scattered Diffraction (EBSD) method and Transmission Electron Microscopy (TEM) were utilized for characterization of the subgrain and grain structures of the processed sheets. The results indicate that different mechanisms at different levels of strain lead to the gradual evolution of ultrafine or nanocrystalline grains. Grain fragmentation as well as the development of subgrains are the major mechanisms at the early stages of ARB. Strain induced transformation of low angle to high angle grain boundaries and formation of a thin lamellar structure occur at the medium level of strain. Finally, the progressive fragmentation of these thin lamellar structures into more equi-axed grains is the dominant mechanism at relatively high strains which results in grain size reduction to submicron scale.
You currently do not have access to the full text article. |
---|