World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE EMERGENCE OF COLLECTIVE ORDER IN SWARMING SYSTEMS: A RECENT DEBATE

    https://doi.org/10.1142/S0217979209053552Cited by:54 (Source: Crossref)

    In this work, we consider the phase transition from ordered to disordered states that occur in the Vicsek model of self-propelled particles. This model was proposed to describe the emergence of collective order in swarming systems. When noise is added to the motion of the particles, the onset of collective order occurs through a dynamical phase transition. Based on their numerical results, Vicsek and his colleagues originally concluded that this phase transition was of second order (continuous). However, recent numerical evidence seems to indicate that the phase transition might be of first order (discontinuous), thus challenging Vicsek's original results. In this work, we review the evidence supporting both aspects of this debate. We also show new numerical results indicating that the apparent discontinuity of the phase transition may in fact be a numerical artifact produced by the artificial periodicity of the boundary conditions.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!