World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE EFFECT OF POROSITY ON HEAT TRANSFER AND MASS TRANSFER OF Mg-3Ni-2MnO2 HYDROGEN STORAGE MATERIALS REACTION BED

    https://doi.org/10.1142/S0217979209060270Cited by:5 (Source: Crossref)

    Hydrided Mg-3Ni-2MnO2 composite powders were prepared by mechanical milling under hydrogen atmosphere. Heat and mass transfer, the effective thermal conductivity (ETC) of the hydrided Mg-3Ni-2MnO2 powder reaction bed with various porosities were measured using a self-made apparatus. The effect of porosity on the bed is also analysized. The results show that the ETC of reaction bed is poor and it increases with decreasing porosity. Three porosities, 0.37, 0.53, 0.63 were selected in the present work. The bed with 0.53 porosity exhibits relatively fast reaction rates in both hydrogenation and dehydrogenation process. The hydrogenation process is a fast exothermic reaction resulting in a quick increase if the temperature of the bed during this process, and there is a temperature gradient: the temperature close to the bed wall is lower but higher at the center of bed. In dehydrogenation of the bed, the temperature of hydrided bed decreases due to the endothermic reaction, and the temperature at the center falls the lowest and keep at that temperature for a long time. The analyses reveal that increase of ETC don't always helps to improve the bed's hydriding and dehydriding rates. There should be an optimal porosity which helps to transfer both the heat and the mass.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!