World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Session B: Advanced Steels, High Temperature Metallic Materials and Ceramic MaterialsNo Access

EVOLUTION OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF THE Ni-25Al-27.5Fe-1.0Nb INTERMETALLIC ALLOY AFTER THERMAL MECHANICAL TREATMENT

    https://doi.org/10.1142/S0217979209060452Cited by:0 (Source: Crossref)

    The evolution of microstructure and mechanical properties of the Ni-25Al-27.5Fe-1.0Nb intermetallic alloy after thermal mechanical treatment (TMT) was systematically investigated by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) with electron dispersive spectrum (EDS) capability, and atmosphere-controlled tensile test at room temperature with different strain rate. The results of XRD reveals that a matrix of β' phase [(Ni, Fe) Al type ordered bcc structure] and a precipitated γ phase (Ni3Fe fcc solid solution) co-exist in this alloy after TMT. The dendritic microstructure of the as-cast alloy was eliminated after TMT process. In parallel, a refined and homogeneous distributed lath precipitates can be obtained after annealing at 820 for 4 hr. Additionally, this alloy presents a relative high strength as well as ductile mechanical behavior (UTS~1320 MPa and ε~8%, respectively) at room temperature in air. A 30% improvement in yield strength is suggested to be contributed by the refined microstructure from the TMT. Moreover, the tensile strength and ductility of this alloy exhibit insensitive response with respect to the loading strain rate at room temperature.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!