World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Session E: Nano-Structured Materials, Biomedical Materials and Materials SimulationNo Access

A FINITE ELEMENT ANALYSIS OF EFFECTIVE THERMOELECTROELASTIC PROPERTIES OF COMPOSITES WITH A DOUBLY PERIODIC ARRAY OF PIEZOELECTRIC FIBERS

    https://doi.org/10.1142/S0217979209061470Cited by:1 (Source: Crossref)

    This work deals with modeling of 1-3 thermoelectroelastic composites with a doubly periodic array of piezoelectric fibers under arbitrary combination of mechanical, electrical loads and a uniform temperature field. The finite element method (FEM) based on a unit cell model is extended to take into account the thermoelectroelastic effect. The FE predictions of effective properties for several typical periodic microstructures are presented, and their influences on effective properties are discussed. A comparison with the Mori-Tanaka method is made to estimate the application scope of micromechanics. The study is useful for the design and assessment of composites.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!