World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Session F: Novel Materials Processing TechnologyNo Access

CONTROLLING THE BIODEGRADATION RATE OF MAGNESIUM USING SOL-GEL AND APATITE COATINGS

    https://doi.org/10.1142/S0217979209061809Cited by:4 (Source: Crossref)

    Magnesium is light, biocompatible and has similar mechanical properties to natural bone, so it has the potential to be used as a biodegradable material for orthopedic applications. However, pure magnesium severely corrodes in a physiological environment, which may hinder its use for in vivo applications. Protective coatings are effective method to delay the corrosion of Mg. In this study, sol-gel and hydroxyapatite (HA) coatings were applied onto the surface of pure magnesium substrates using a biomimetic technique. The corrosion rate of surface-treated substrates was tested. It was found that both types of coatings substantially slowed down the corrosion of the substrate, the 60Ca so-gel and HA coating was more effectively than the 100Si so-gel and HA coating in hindering the degradation of the substrate. Thus, the corrosion rate of magnesium implants can be closely tailored by coating sol-gel then coating apatite thereby monitoring the release of magnesium ions into the body.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!