World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MICROSTRUCTURE AND MAGNETIC PROPERTIES OF NANOSTRUCTURED Al2O3-20vol%Fe70Co30 COMPOSITE PREPARED BY HIGH ENERGY MECHANICAL MILLING

    https://doi.org/10.1142/S0217979209061937Cited by:2 (Source: Crossref)

    Al2O3-20vol%Fe70Co30 composite powders have been prepared by high energy ball milling a mixture of Al2O3 powder and Fe70Co30 alloy powder. The Fe70Co30 alloy powder was also prepared by mechanical alloying of Fe and Co powders using the same process. The effects of milling duration from 8 to 48 hours on microstructure and magnetic properties of the nanostructured composite powders have been studied by means of X-ray Diffractometry (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). It was found that the nanostructured composite powder particles with irregular shapes and Fe70Co30 alloy particles being embedded in them formed after 8 hours of milling. The average grain size of the Al2O3 matrix reduced drastically to less than 18nm after 16 hours of milling. On the other hand, the embedded alloy particles demonstrated almost unchanged average grain size in the range of 14-15nm. Magnetic properties of the powder compacts at room temperature were measured from hysteresis curves, and show strong dependence of the milling time, with the coercivity increasing from 67.1 up to 127.9kOe with increasing the milling time from 8 to 48 hours. The possible microstructural reasons for this dependence are discussed.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!