World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Statistical Mechanics, Magnetism, Quantum and Nonlinear DynamicsNo Access

QUASICLASSICAL FOURIER PATH INTEGRAL QUANTUM CORRECTION TERMS TO THE KINETIC ENERGY OF INTERACTING QUANTUM MANY-BODY SYSTEMS

    https://doi.org/10.1142/S0217979209063201Cited by:0 (Source: Crossref)

    A quasiclassical expression for the kinetic energy of interacting quantum many-body systems is derived from the full quantum expression for the kinetic energy as derived by means of the Fourier path integral representation of the canonical many-body density matrix of such systems. This quasiclassical form of the kinetic energy may be cast in the shape of thermodynamic expectation values w.r.t. to the classical Boltzmann distribution of the many-body system, which involves only the many-body interaction in contrast to the full Fourier path integral quantum distribution, which carries contributions also from the many-body kinetic energy operator. The quasiclassical quantum correction terms to the classical Boltzmann equipartition value are valid when the product of temperature and particle mass is large and then lead to significant technical simplifications and increase of speed of Monte Carlo computations of the quantum kinetic energy. The formal findings are tested numerically in quantum Fourier path integral versus classical Monte Carlo simulations.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!