World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FLUID HELIUM-4 IN THERMAL EQUILIBRIUM

    https://doi.org/10.1142/S0217979209063286Cited by:4 (Source: Crossref)

    The microscopic quantum structure of fluid 4He may be clearly revealed by a proper decomposition of its spatial correlations into quantum statistical components and direct quantum correlations. This decomposition permits to elucidate the competition between the short-ranged statistical (or particle exchange) correlations and the quantum correlations brought about by the existing strong interparticle repulsion at short relative particle-particle distances. The appropriate method of choice is provided by correlated density-matrix (CDM) theory. It does not only permit a detailed formal analysis of this competition but also allows for a quantitative numerical computation of correlation functions, structure functions, and momentum and energy distributions. The theoretical CDM results for 4He are, so far as possible, compared with results from path-integral Monte Carlo (PIMC) calculations and with available experimental results. Reported are CDM results on relevant structure functions, correlation functions in coordinate space, kinetic energy distributions, and gross quantitities such as the exchange energy for fluid 4He. The calculations are performed for normal helium at various temperatures in the range TBE = 2.17K ≤ T < 14K.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!