World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ANOMALOUS BEHAVIOR OF IDEAL FERMI GAS BELOW 2D: THE "IDEAL QUANTUM DOT" AND THE PAUL EXCLUSION PRINCIPLE

    https://doi.org/10.1142/S0217979209063304Cited by:3 (Source: Crossref)

    A physical interpretation is given to a curious "hump" that develops in the chemical potential as a function of absolute temperature in an ideal Fermi gas for any spatial dimensionality d < 2, integer or not, in contrast with the more familiar monotonic decrease for all d ≥ 2. The hump height increases without limit as d decreases to zero. The divergence at d = 0 is shown to be a clear manifestation of the Pauli Exclusion Principle whereby two spinless fermions cannot sit on top of each other in configuration space. The hump itself is thus an obvious precursor of this manifestation, otherwise well understood in momentum space. It also constitutes an "ideal quantum dot" when d = 0.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!