EXTRAORDINARY MAGNETORESISTANCE IN HYBRID SEMICONDUCTOR-METAL SYSTEMS
Abstract
We show that extraordinary magnetoresistance (EMR) arises in systems consisting of two components; a semiconducting ring with a metallic inclusion embedded. The important aspect of this discovery is that the system must have a quasi-two-dimensional character. Using the same materials and geometries for the samples as in experiments by Solin et al.1,2, we show that such systems indeed exhibit a huge magnetoresistance. The magnetoresistance arises due to the switching of electrical current paths passing through the metallic inclusion. Diagrams illustrating the flow of the current density within the samples are utilised in discussion of the mechanism responsible for the magnetoresistance effect. Extensions are then suggested which may be applicable to the silver chalcogenides. Our theory offers an excellent description and explanation of experiments where a huge magnetoresistance has been discovered2,3.
You currently do not have access to the full text article. |
---|