STRINGENT VERIFICATION OF THIRD ORDER + SECOND ORDER PERTURBATION DENSITY FUNCTION THEORY: BASED ON SHORT-RANGE SQUARE WELL POTENTIAL
Abstract
A recently proposed third order + second order perturbation density functional theory (DFT) approach is made self-contained by using a virial pressure from the Ornstein–Zernike integral equation theory as input to determine the numerical value of an associated physical parameter. An exacting examination is formulated by applying the self-contained perturbation DFT approach to a short-range square well fluid of low temperatures subject to various external fields and comparing the theoretical results for density profiles to the corresponding grand canonical ensemble Monte Carlo simulation results. The comparison seems favorable for the third order + second order perturbation DFT approach as a self-contained and accurate predictive approach. It is surprisingly found that this self-contained third order + second order perturbation DFT approach is displayed outstandingly even if a deep SW perturbation term is being accounted for by a second order perturbation expansion. A discussion is presented about potential opportunity for this perturbation scheme.
You currently do not have access to the full text article. |
---|