World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STUDIES ON AGE HARDENING FOR IMPROVEMENT OF 6261 AND 6060 EXTRUDED ALUMINIUM ALLOYS

    https://doi.org/10.1142/S0217979210064757Cited by:0 (Source: Crossref)

    The magnesium silicide precipitates in the 6XXX series alloy are the main components contributing to the heat treatable properties and T6 strength of the alloy, which is influenced by the size, morphology and distribution of this phase. During the extrusion process, the strength contributing phase, magnesium silicide is supposed to dissolve and form again in a controlled state during age hardening. Whereas the intermetallic AlFeSi phase has little if any influence on the strength, the β phase of this intermetallic is known to cause brittle fracture of this alloy, as opposed to the less detrimental, more equiaxed α phase formed during homogenisation.

    This study investigates the as-extruded 6060 and the more heavily alloyed 6261 aluminium alloys, as well as the subsequent heat treated forms to investigate the ageing conditions to optimise hardening and shorten age hardening times for higher cost effectiveness. The microstructure, texture and precipitate size and distributions were studied using optical microscopy, SEM, EBSD and DSC. SEM and EDAX results have indicated signs of evenly distributed α AlFeSi and β Magnesium Silicide precipitates. The phase responsible for hardening is believed to be the much smaller scaled β" magnesium silicide, requiring much higher resolution studies.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!