THE EFFECT OF CARBON MONOXIDE ON THE HYDROGEN PERMEABILITY OF A PALLADIUM MEMBRANE
Abstract
Plating thin Palladium (Pd) film on the outer surface of a porous stainless steel tube enables very rapid hydrogen permeation with an absolute selectivity. Methane steam reforming for hydrogen production is performed in a Pd membrane reactor. In this reaction, carbon monoxide (CO) synthesized is known to affect hydrogen permeability. The effect on hydrogen permeability and the membrane stability were investigated. After hydrogen was flowed through Pd membrane for 1 hour, CO (1%, 10%, 100% diluted by helium) was flowed on the membrane for 1 hour, and hydrogen was re-permeated through the membrane. Under the all experiment, the temperature, the differential pressure and the flow rate of non-permeation side were 823K, 0.1 MPa and 10 ml·min-1, respectively. After the re-permeating hydrogen, the hydrogen permeation rate increased gradually. Finally the rate arrived at the constant value before CO was flowed. But the necessary time was depend on the concentration of CO. The necessary time for three concentration of CO 1%, 10%, and 100% were 30min, 60min, and 180min, respectively. The reason was that depositing carbon from CO affected to hydrogen permeability. The carbon was changed to methane by hydrogen flow and the membrane was recycled.
You currently do not have access to the full text article. |
---|