World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PROGRAMMABLE AND CONTROLLED REMOTE UNAMBIGUOUS QUANTUM-STATE DISCRIMINATION BASED ON NONLOCAL SYSTEM–ANCILLA CONDITIONAL ROTATION

    https://doi.org/10.1142/S0217979211101156Cited by:0 (Source: Crossref)

    We propose and prove a theoretical scheme of realizing programmable and controlled remote quantum-state unambiguous discrimination (UD) based on nonlocal system–ancilla unitary evolution. By decomposing the evolution process from the initial state to the final state, we first construct the required nonlocal unitary evolution, which is a nonlocal conditional rotation. Utilizing the entanglement property of Greenberger–Horne–Zeilinger (GHZ) class state, we then design a quantum network for implementing the controlled nonlocal conditional rotation gate, and thus provide a feasible physical means to realize the remote UD. The features of the scheme is that the particular pair of states of system (data register) that can be remotely and unambiguously discriminated is specified by the state of the ancilla (program register). Furthermore, a third side is included, who may participate the process of quantum remote implementation as a supervisor. When the quantum channel is partially entangled, the third one can rectify the state distorted by the imperfect quantum channel. The success probability of implementing this remote UD is also investigated.

    PACS: 03.67.-a, 03.67.LK
    You currently do not have access to the full text article.

    Recommend the journal to your library today!