World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EMERGENCE OF OSCILLATORY TURING PATTERNS INDUCED BY CROSS DIFFUSION IN A PREDATOR–PREY SYSTEM

    https://doi.org/10.1142/S0217979212501937Cited by:6 (Source: Crossref)

    In this paper, we presented a predator–prey model with self diffusion as well as cross diffusion. By using theory on linear stability, we obtain the conditions on Turing instability. The results of numerical simulations reveal that oscillating Turing patterns with hexagons arise in the system. And the values of the parameters we choose for simulations are outside of the Turing domain of the no cross diffusion system. Moreover, we show that cross diffusion has an effect on the persistence of the population, i.e., it causes the population to run a risk of extinction. Particularly, our results show that, without interaction with either a Hopf or a wave instability, the Turing instability together with cross diffusion in a predator–prey model can give rise to spatiotemporally oscillating solutions, which well enrich the finding of pattern formation in ecology.

    PACS: 87.23.-n, 87.23.Cc, 89.75.Kd, 89.75.Fb, 47.54.-r
    You currently do not have access to the full text article.

    Recommend the journal to your library today!